ANALISI IDROGEOLOGICA QUANTITATIVA DEL DOMINIO CARBONATICO UMBRO

QUANTITATIVE HYDROGEOLOGICAL ANALYSIS OF THE CARBONATE DOMAIN OF THE UMBRIA REGION (CENTRAL ITALY)

LUCIA MASTRORILLO(*), TIZIANA BALDONI(*), FRANCESCA BANZATO(*), ARNALDO BOSCHERINI(**), DOREDANA CASCONE(*), ROBERTO CHECCUCCI(**), MARCO PETITTA(*) & CARLO BONI(*)

(*) “Sapienza” Università di Roma - Dipartimento di Scienze della Terra - Rome, Italy
(**) Regione Umbria - Direzione Regionale Ambiente, Territorio e Infrastrutture Servizi Tecnici Regionali - Perugia, Italy
e-mail: lucia.mastrorillo@uniroma1.it

INTRODUZIONE

La realizzazione della cartografia idrogeologica prevista da un contratto di ricerca stipulato nel 2007-2008 fra il Dipartimento di Scienze della Terra dell’Università “La Sapienza” di Roma e la Regione Umbria ha costituito l’occasione per una revisione critica delle attuali conoscenze idrogeologiche regionali. L’omogeneizzazione dell’intero quadro conoscitivo ha portato alla realizzazione di un modello idrogeologico concettuale in grado di coniugare l’approccio a scala regionale con quello di maggiore dettaglio relativo a singole strutture idrogeologiche (BONI & PETITTA, 2008).

Applicando i metodi di analisi idrogeologica quantitativa è stata aggiornata la valutazione delle risorse idriche sotterranee disponibili in
regime di magra ordinaria ed è stato ricostruito un probabile schema di circolazione idrica sotterranea del dominio carbonatico umbro, suddiviso non solo per idrostrutture ma anche in funzione dei diversi acquiferi. Il modello idrogeologico proposto trova una sua verifica nel calcolo integrato del bilancio idrogeologico, in cui il risultato del bilancio delle strutture adiacenti viene tenuto in considerazione per giustificare quantitativamente gli eventuali apporti sotterranei esterni a ciascuna struttura con altrettante perdite sotterranea verso strutture limitrofe.

Questa nota, oltre ad illustrare, molto sinteticamente, i risultati raggiunti, è finalizzata a descrivere l’approccio metodologico utilizzato, nella convinzione che solo un’accurata conoscenza geologico-strutturale del territorio ed un’adeguata disponibilità di dati idrogeologici aggiornati può consentire la ricostruzione di modelli di circolazione idrica, traducibili in strumenti realistici operativi per la gestione della risorsa idrica sia a scala regionale che di dettaglio.

L’area di indagine si estende su circa 3200 km² e comprende i rilievi carbonatici dell’Appennino umbro-marchigiano che ricadono prevalentemente all’interno della regione Umbria e proseguono parzialmente anche in territorio marchigiano e laziale.

CENNI DI GEOLOGIA E IDROGEOLOGIA REGIONALE

La porzione umbra della catena carbonatica appenninica appartiene al vasto dominio geologico-strutturale dell’Appennino umbro-marchigiano (Fig. 1), compreso fra il dominio umbro interno ad ovest e l’analogo marchigiano dove affiorano prevalentemente le successioni emipelagiche e torbiditiche. I nuclei carbonatici della dorsale Narnese-Amerina, dei Monti Martani, di Monte Subasio, dei Monti di Gubbio e dei Massici Perugini emergono dai depositi terrigeni del dominio umbro interno ad ovest della catena carbonatica vera e propria.

Le rocce carbonatiche più antiche in affioramento sono riferibili al Trias superiore ("Marne di Rhaetavicula contorta" e "Anidriti di Burano") e giacciano sotto il Calcare Massiccio del Lias inferiore, tipico deposito di piattaforma carbonatica. Sul substrato liassico, fortemente disarticolato dalla tettonica disensitiva, si è depositata fino al Miocene la ben nota successione carbonatica pelagica umbro-marchigiana. Tale successione è caratterizzata da un’evidente disomogeneità dei sedimenti giurassici, legata ai diversi ambienti deposizionali di quel periodo (sedimentazione su alti e bassi strutturali). Le locali differenze dello spessore e dei caratteri litologici e paleontologici delle formazioni giurassiche, hanno portato alla distinzione di una successione umbro-marchigiana "completa" (quando sono presenti le formazioni tipiche di basso strutturale) e di una successione "ridotta" e "condensata" (quando le formazioni presentano spessori limitati e lacune di sedimentazione, tipici di ambienti deposizionali di alto strutturale). In particolare per "condensata" si intende la successione in cui i depositi giurassici sono rappresentati dalla Formazione del Bugarone che, su alcuni alti strutturali, sostituisce tutte le formazioni comprese fra Rosso Ammonitico e Maiolica.

L’assetto strutturale dell’Appennino Umbro-Marchigiano è quel-

OUTLINE OF REGIONAL GEOLOGY AND HYDROGEOLOGY

The Umbrian portion of the Apennine carbonate ridge belongs to the large geological-structural domain of the Umbria-Marches Apennines (Fig. 1). This domain extends from the inner Umbrian domain (to the W) to the Marches fore-deep, where hemipelagic and turbiditic outcrops are dominant.

The carbonate reliefs of the Narni-Amerina ridge, of the Martani Mts., of Mt. Subasio and of the Gubbio and Perugia massifs outcrop from the terrigenous deposits of the inner Umbrian domain, W of the carbonate ridge proper.

The most ancient rock outcrops belong to the upper Trias ("Marne di Rhaetavicula contorta" marlstones and "Anidriti di Burano" anhydrites). They underlie the "Calcare Massiccio" limestone unit of lower Lias age, a typical carbonate-platform deposit. The well-known Umbria-Marches pelagic carbonate sequence was emplaced over the Liassic bedrock (strongly dislocated by extensional tectonic movements) until the Miocene. In this sequence, Jurassic sediments are clearly dishomogeneous, as they reflect the different depositional environments which prevailed at that time (sedimentation on structural highs and lows). Local differences (in terms of thickness, lithology and palaeontology) between the Jurassic formations suggested to make a distinction between the "complete" Umbria-Marches sequence (with typical structural-low formations) and the "reduced" or "condensed" sequence (with formations of small thickness and sedimentation hiatuses, typical of structural-low depositional environments). In particular, the "condensed" sequence was defined as the one where the Jurassic deposits are represented by the "Bugarone" formation. On some structural highs, this formation replaces all the formations ranging from the "Rosso Ammonitico" to
lo tipico di una catena a pieghe e sovrascorrenti a vergenza orientale. Le pieghe, fortemente asimmetriche, sono costituite da anticlinali (con cresta piatta e fianchi orientali da verticali a rovesciati) e da strette sinclinali. Il fianco orientale delle pieghe è generalmente interessato da sovrascorrenti e faglie inverse, a cui frequentemente si associano zone di taglio trascorrenti N-S destre e E-W sinistre. Nel settore settentrionale (dominantemente estendone in territorio marchigiano) e centrale, i piani di sovrascorrimento hanno direzione da NW-SE a NNW-SSE e sono puramente compressivi; nel settore meridionale hanno direzione NNW-SSE e prevale la componente transpressiva dextra.

Allo stile tettonico compressivo si associano e si sovrappongono le "Maiolicas" ones.

The structural setting of the Umbria-Marches Apennines is typical of an E-dipping thrust-and-fold belt. Its strongly asymmetrical folds consist of anticlines (flat crest and vertical to overturned eastern limbs) and of narrow synclines. Locally, the eastern limb of the folds has thrust and reverse faults, frequently associated with dextral N-S and sinistral E-W strike-slip shear zones. In the northern sector (dominantly extending in the Marches region) and in the central one, the thrust planes are NW-SE- to NNW-SSE-trending and merely compressional; in the southern sector, they are NNW-SSE-trending with a prevailing transpressive dextral component.

The compressional tectonic style is compounded by the effects of
gli effetti della tettonica distensiva pliocenico-quaternaria, che ha ribassato ampi settori carbonatici originando, all’interno della dorsale, vaste depressioni intramontane, successivamente colmate dai depositi fluvio-lacustri (Piani di Colfiorito, Piani di Castelluccio, Piana di Norcia, Piana di Cascia).

Il dominio carbonatico umbro appartiene al grande "Gruppo idrogeologico dei Monti dell’arco umbro-marchigiano" individuato da Boni et alii (1986) che hanno misurato, per l'intera struttura, una portata complessiva in uscita di 58,6 m³/s, di cui circa l'80% emergente in corrispondenza di sorgenti lineari.

Il particolare assetto geologico-strutturale e geomorfologico del dominio umbro-marchigiano ha favorito l'impostazione di un reticolo di drenaggi attivo trasversale all'asse delle strutture e profondamente inciso, tanto da raggiungere la quota di saturazione degli acquiferi contenuti nelle dorsali. In queste condizioni, alcuni tratti di alveo costituiscono il punto di recapito della locale circolazione idrica sotterranea, assumendo le caratteristiche di una sorgente. Questo tipo di sorgente viene definita "lineare" per distinguerla dai tradizionali punti di emergenza delle acque sotterranee, definiti come sorgenti "puntuali".

Le ricerche di idrogeologia quantitativa regionale condotte successivamente alla pubblicazione dello Schema Idrogeologico dell'Italia Centrale (Boni et alii, 1986) hanno notevolmente approfondito il dettaglio delle conoscenze idrogeologiche dell'Appennino carbonatico umbro-marchigiano; i risultati ottenuti da circa un ventennio di studi sono ampiamente descritti nei numerosi lavori riportati in bibliografia (Boni et alii, 1991; Boni & Mastrorilolo, 1993; Boni et alii, 1994; Boni & Petitta, 1994; Boni & Preziosi, 1994; Boni et alii, 2005; Boni et alii, stesso volume; Boscherini et alii, 2005; Caprari & Nanni, 1999; Di Matteo et alii, stesso volume; Mastrorilolo, 1994; Mastrorilolo, 1996; Mastrorilolo, 2001; Preziosi, 2007).

I rapporti stratigrafici e le caratteristiche strutturali del dominio umbro-marchigiano danno origine ad un assetto idrogeologico regionale caratterizzato dall'esistenza di acquiferi separati, variamente articolati e con possibili reciproche interconnessioni idrauliche locali. E' noto che la successione stratigrafica umbro-marchigiana è costituita da un'alternanza di formazioni prevalentemente calcaree, che costituiscono i complessi idrogeologici potenzialmente sidi di acquiferi, e di formazioni marnoso-arigrole con funzione di aquiclude e acquitardi.

A scala regionale è stata riconosciuta una circolazione idrica più profonda, all'interno dei complessi idrogeologici costituiti dalle formazioni del Calcare Massiccio, della Corniola e della Maiolica ed una circolazione idrica generalmente meno profonda, all'interno del complesso della Scaglia calcarea (Scaglia bianca e Scaglia rossa) (Boni et alii, 2005). Nel territorio umbro risulta ben evidente la netta distinzione fra i nuclei calcarei delle anticline circondati dalla cintura impermeabile delle Marne a Fucoidi e contenenti acquiferi basali più o meno estesi, e la fascia periferica della Scaglia calcarea sede della circolazione idrica meno profonda idraumaticamente limitata dalla formazione della Scaglia Cinerea (Mastrorilolo, 2001). Plio-Quaternary extensional tectonic movements, which downthrew wide carbonate sectors, giving rise to extensive intermontane basins. These basins were subsequently filled with fluviolacustrine deposits (Colfiorito, Castelluccio, Norcia and Cascia plains).

The Umbrian carbonate domain makes part of the huge hydrogeological system of the Umbria-Marches mountains identified by Boni et alii (1986). The total outflow from this hydrogeological system was measured to be 58.6 m³/s, of which 80% from linear springs.

The distinctive geological-structural and geomorphological features of the Umbria-Marches domain have favoured the development of an active drainage area. This area, which extends transversally to the axis of the investigated hydrogeological systems, is deeply incised, to the extent that it reaches the saturated zone of the aquifers contained in the ridges. Under these conditions, some portions of streambeds act as points of discharge of local groundwater, taking on the characteristics of springs. These springs are defined as "linear" to distinguish them from the traditional points of emergence of groundwater, which are called "localised" springs.

Quantitative hydrogeology investigations at regional scale have been conducted after the publication of the hydrogeological model of central Italy (Boni et alii, 1986). These investigations have shed more light on the hydrogeology of the Umbria-Marches carbonate Apennines. The findings from over two decades of studies are extensively reported in the cited literature (Boni et alii, 1991; Boni & Mastrorilolo, 1993; Boni et alii, 1994; Boni & Petitta, 1994; Boni & Preziosi, 1994; Boni et alii, 2005; Boni et alii, stesso volume; Boscherini et alii, 2005; Caprari & Nanni, 1999; Di Matteo et alii, stesso volume; Mastrorilolo, 1994; Mastrorilolo, 1996; Mastrorilolo, 2001; Preziosi, 2007).

The stratigraphic relations and structural features of the Umbria-Marches domain give rise to a regional hydrogeological setting with separate aquifers, having different characteristics and possible local hydraulic links. Dominantly calcareous formations make up the hydrogeological systems which potentially accommodate aquifers, while marly-clayey formations act as aquiclude and aquitards.

A regional deep groundwater was identified inside the hydrogeological systems of the "Calcare Massiccio", "Corniola" and "Maiolica" formations, while a generally shallow groundwater was found inside the "Scaglia Calcarea" ("Scaglia bianca" and "Scaglia rossa") formation (Boni et alii, 2005). In the Umbria domain, the calcareous cores of anticlines (surrounded by the impermeable belt of the "Marne a Fucoidi" marlstones and containing more or less significant basal aquifers) are well distinguished from the peripheral belt of the "Scaglia Calcarea", where the shallow groundwater (hydraulically bounded by the "Scaglia Cinerea" formation - Mastrorilolo, 2001) circulates.
I METODI D'INDAGINE DELL'IDROGEOLOGIA QUANTITATIVA

Il principio generale su cui si fonda il metodo dell'idrogeologia quantitativa stabilisce che la portata mediamente erogata da una struttura idrogeologica chiusa equivale alla portata che mediamente si infiltra nella sua area di alimentazione. Il confronto fra l'assetto geologico e idrogeologico del territorio e le portate erogate dalle sorgenti consente di identificare le strutture idrogeologiche, definirne la natura dei limiti idraulici e valutarne il bilancio idrogeologico.

Infiltrazione efficace

L'infiltrazione efficace rappresenta il quantitativo di acqua meteorica che, per unità di superficie, si infiltra ogni anno nel sottosuolo, fino a raggiungere gli acquiferi contenuti nelle strutture idrogeologiche. Questo parametro esprime quindi la capacità dei complessi idrogeologici in affioramento di assorbire le acque meteoriche sottraendole al riuscimente, e varia in funzione della litologia, della morfologia e dell'entità delle precipitazioni.

I metodi classici di valutazione del parametro infiltrazione efficace utilizzano coefficienti empirici che, in funzione della litologia affiorante, forniscono una valutazione, espressa come percentuale della precipitazione o della precipitazione effettiva. I risultati ottenuti con questi metodi (definiti "indiretti") risentono dell'approssimazione legata ad una classificazione delle aree di ricarica basata esclusivamente su criteri litologici medi, desunti dalla letteratura, ma che non tengono conto delle reali condizioni degli affioramenti che costituiscono le aree di ricarica indagate.

L'efficacia di questi metodi, inoltre, dipende dal grado di attendibilità e rappresentatività dei dati termo-pluviometrici utilizzati. E' noto che nelle aree montuose le stazioni termo-pluviometriche e nivometriche ad alta quota sono rare, se non del tutto assenti; in realtà queste stazioni sarebbero le uniche idonee alla registrazione di dati rappresentativi dell'effettiva ricarica meteorica delle aree di alimentazione degli acquiferi carbonatici. I metodi di interpolazione quota-precipitazione e quota-temperatura, anche se estremamente sofisticati, non arrivano a fornire una valutazione sufficientemente attendibile della reale entità della ricarica meteorica e soprattutto della sua distribuzione stagionale.

Boni & Bono (1982) e Boni et alii (1986) hanno proposto un metodo di valutazione "diretto" del parametro infiltrazione efficace che, partendo dalla fine del processo idrogeologico, cioè dalla portata erogata dalle sorgenti, risale alla valutazione della quantità di acqua che si infiltra nel sottosuolo, dopo aver definito la maggiore precisione possibile i limiti delle aree di alimentazione sulla base di un'accurata analisi geologico-strutturale del territorio. L'infiltrazione efficace viene opportunamente calcolata, per ogni idrostruttura chiusa, dividendo il volume di acqua mediamente erogato dalle sorgenti dell'idrostruttura stessa per la relativa area di alimentazione.

Questo metodo comporta alcune difficoltà di applicazione nel caso di strutture idrogeologiche sede di circolazione idrica profonda ma prive di emergenze note, che risultano idraulicamente connesse

QUANTITATIVE HYDROGEOLOGY METHODS

Under the quantitative hydrogeology method, the mean discharge from a sealed hydrogeological system or unit is equivalent to the mean infiltration into its recharge area. Comparing the geological and hydrogeological setting of an investigated area with the discharge from its springs may help identify hydrogeological units, define the nature of their hydraulic boundaries and assess their water budget.

Net recharge

Net recharge, named also effective infiltration, is the amount of meteoric water per unit surface that infiltrates into the subsoil every year, until it reaches the aquifers contained in the hydrogeological systems. This parameter thus expresses the capability of the outcropping hydrogeological complexes to absorb meteoric water, which would otherwise run off. The value of this parameter depends on local lithology, morphology and precipitation.

Conventional methods to assess net recharge rely on empirical coefficients. With these coefficients, net recharge may be determined in terms of percentage of infiltration or of actual precipitation, depending on the outcropping lithotypes. The results from these "indirect" methods are biased by the fact that the classification of recharge areas is solely based on mean lithological parameters in terms of permeability. These parameters, which are inferred from the literature, do not consider the actual conditions of the outcrops making up the investigated recharge areas.

Additionally, the effectiveness of these methods depends on the reliability of the temperature-precipitation parameters that are used. As is known, temperature, rain and snow monitoring stations are rare or altogether missing in mountain areas. And yet, these stations would be crucial to collecting reliable data on the actual inflow of meteoric water into carbonate aquifer recharge areas. Elevation-precipitation and elevation-temperature interpolation methods, albeit extremely rigorous, do not afford a reliable assessment of actual meteoric recharge and especially of its seasonal distribution.

Boni & Bono (1982) and Boni et alii (1986) proposed a "direct" method to assess net recharge. Under this method, the boundaries of the recharge areas are demarcated as accurately as possible. Then, the amount of water infiltrating into the subsoil is determined on the basis of the discharge from springs (i.e. at the end of the water cycle). The demarcation process involves a thorough geological-structural analysis of the investigated area. In practice, net recharge is computed by dividing the volume of water discharged on average by the spring by its recharge area.

This method encounters some difficulties of application, if the investigated hydrogeological units have deep groundwater but no known springs and are hydraulically linked to nearby structures. In these situations, net recharge can be deduced indirectly by a percentage of rainfall estimation.
con strutture adiacenti. In questi casi può essere conveniente far riferimento a valori di infiltrazione efficace di letteratura, calcolati come aliquota della precipitazione.

Idrostrutture
L'analisi che conduce all'identificazione dell'idrostruttura (o struttura idrogeologica) richiede la formulazione di un modello idrogeologico concettuale della circolazione idrica sotterranea ad ampio scala, che sintetizzando i dati disponibili arriva alla formulazione di un'ipotesi attendibile e congruente.

La corretta ricostruzione di un modello idrogeologico concettuale della circolazione idrica sotterranea richiede necessariamente la conoscenza nel dettaglio di due aspetti fondamentali del territorio:
- l'assetto geologico strutturale e soprattutto la natura dei principali lineamenti tettonici regionali (faglie, fronti di sovrascorrimento, ecc.), nonché le caratteristiche litologiche delle formazioni affioranti (contenuto marnoso-argilloso, grado di fratturazione, ecc.);
- la distribuzione territoriale e la portata di magra di tutte le emergenze naturali del territorio studiato.

Il modello idrogeologico ricostruito trova eventuali conferme sulla base di dati idrochimici delle acque delle principali emergenze riconosciute, che costituiscono, quindi, un complemento particolarmente utile alla conoscenza idrogeologica, fino a divenire indispensabili per i casi più complessi.

L'accurata analisi e revisione in chiave idrogeologica delle informazioni geologiche porta alla definizione ed individuazione dei lineamenti geologico-strutturali che potrebbero costituire, per la loro natura, limiti e barriere idrauliche in grado di condizionare le direzioni del deflusso sotterraneo.

Il confronto fra la distribuzione territoriale delle sorgenti, la portata delle stesse e l'andamento, in superficie e in profondità, dei probabili limiti idraulici riconosciuti, consente l'individuazione delle idrostrutture, che, in definitiva, corrispondono all'area di alimentazione di un sistema di emergenze naturali, distribuite sul territorio.

Il calcolo dell'infiltrazione efficace, eseguito con il metodo "diretto", fornisce un elemento di conferma dell'ipotesi di ricostruzione o, viceversa, richiede un ulteriore processo interpretativo. I valori di infiltrazione efficace, infatti, devono essere compatibili con la realtà idrogeologica investigata: qualora risultino inverosimilmente alti o bassi è necessario verificare il ruolo idrogeologico attribuito ai limiti idraulici, ipotizzare probabili scambi idrici sotterranei fra idrostrutture adiacenti e arrivare progressivamente ad una nuova e più congruente formulazione del modello idrogeologico inizialmente proposto.

Bilancio idrogeologico
Il bilancio idrogeologico prevede il confronto quantitativo fra il volume d'acqua sotterranea in uscita e il volume d'acqua in entrata nel tempo in un'idrostruttura e può essere riferito a diverse scale di indagine e, quindi, a diversi livelli di approssimazione.

Il metodo "diretto" dell'idrogeologia quantitativa indica come

Hydrological units
Identifying a hydrogeological unit means building a large-scale conceptual model of its groundwater flow. The model should be capable of summarising available data so as to yield plausible and consistent assumptions.

Developing an adequate conceptual model of groundwater flow requires collecting detailed data on two fundamental aspects of the investigated area:
- geological-structural setting, especially the nature of its main regional tectonic features (faults, overthrusts, etc.), as well as the lithological characteristics of its exposed formations (marly-clayey content, jointing, fracturing, etc.);
- spatial distribution of and minimum flow from all of its springs.

The hydrogeological model so built may be validated by the hydrochemical data of the water flowing from the main springs that have been identified. The availability of these data, which are a useful complement of hydrogeological data, becomes imperative in the most complex cases.

Careful review and analysis of available geological data from a hydrogeological standpoint may help define geological-structural features which act as hydraulic barriers to groundwater flow.

Comparison of the spatial distribution of springs, their discharge and the geometry of hydraulic barriers at the surface and at depth may help identify hydrogeological units, which ultimately correspond to the recharge area of a system of natural springs distributed over a given area.

Net recharge, computed with the "direct" method, may help substantiate the assumed model or point to the need for additional interpretation steps. In effect, net recharge values should be consistent with the investigated hydrogeological reality. If they are excessively high or low, it is necessary to verify the role assigned to hydraulic barriers, to suppose cross-flows between nearby hydrogeological units and gradually develop a new model which is more coherent than the initial one.
"uscite" del bilancio le portate erogate dalle sorgenti e gli scambi idrici sotterranei verso l'esterno; costituiscono le "entrate" l'infiltrazione efficace e gli eventuali apporti sotterranei provenienti dall'esterno.

Boni et alii (1986) hanno calcolato per l'intero Gruppo idrogeologico dell'Arco dei Monti Umbro-Marchigiano un bilancio idrogeologico a scala regionale, fornendo una prima indicazione dell'ordine di grandezza dei parametri idrogeologici che caratterizzano il dominio studiato. Gli Autori hanno valutato una portata complessivamente erogata annualmente da tutte le sorgenti di ciascuna idrostruttura per l'area dell'idrostruttura stessa.

Il valore dell'infiltrazione efficace delle idrostrutture idricamente chiuso è stato calcolato come prodotto del valore di portata teorica calcolata (1:500.000) e l'entità degli scambi idrici sotterranei fra le idrostrutture.

Net recharge in the "open" hydrogeological units, having exchanges with adjacent hydrogeological units, is assumed equal to the value calculated for adjacent independent hydrogeological units, where similar geological and rainfall characteristics have been recognized. In these cases, the unknown term is represented by hydraulic exchanges, which are evaluated by comparison between teorical spring discharge (net recharge in the outcrop area) respect to the measured spring discharge, evidencing deficit or surplus.

For hydrogeological units where real spring discharge is higher than calculated value, an inflow from adiacent units can be inferred; in hydrogeological units having real spring discharge lower than calculated values, an outflow towards neighbouring units can be attributed. Values of the exchanges is equal to the difference between calculated and measured spring discharges of each hydrogeological unit.

La metodologia descritta è stata utilizzata per ottenere il modello idrogeologico concettuale della circolazione idrica sotterranea del dominio carbonatico umbro, presentato in questa nota.

L'elaborazione e l'interpretazione dei dati quantitativi disponibili ha portato alla realizzazione preliminare di una carta idrogeologica alla scala 1:100.000 che ha costituito la sintesi delle informazioni idrogeologiche di base per la ricostruzione, ad una scala di minore dettaglio (1:250.000), del modello di circolazione idrica proposto, riproposto ad una scala ridotta nella tavola 1.

I principali contenuti del prodotto preliminare di sintesi (carta "outflows" of the budget include the discharge from springs and groundwater losses, whereas the "inflows" are the net recharge and groundwater inputs, if any.

For the overall Umbrian-Marchean hydrogeological system, Boni et alii (1986) computed a regional-scale hydrological budget, providing a preliminary assessment of the order of magnitude of the hydrogeological parameters of the system (overall mean flow rate 58.5 m³/s, corresponding to an infiltration of 533 mm/year). Given the scale of the assessment (1:500,000), any groundwater cross-flows between the investigated hydrogeological unit and the neighbouring units were not significantly appreciable.

At the detailed scale adopted in this paper, water exchanges between adjacent hydrogeological units can be identified and evaluated, applying the methodology explained below.

In the hydrogeological units hydraulically independent, the unknown term is represented by the net recharge, which can be evaluated by the ratio between total yearly spring discharge and the outcrop area of each single hydrogeological unit.

Net recharge in the "open" hydrogeological units, having exchanges with adjacent units, is assumed equal at the value calculated for adjacent independent hydrogeological units, where similar geological and rainfall characteristics have been recognized. In these cases, the unknown term is represented by hydraulic exchanges, which are evaluated by comparison between teorical spring discharge (net recharge in the outcrop area) respect to the measured spring discharge, evidencing deficit or surplus.

For hydrogeological units where real spring discharge is higher than calculated value, an inflow from adiacent units can be inferred; in hydrogeological units having real spring discharge lower than calculated values, an outflow towards neighbouring units can be attributed. Values of the exchanges is equal to the difference between calculated and measured spring discharges of each hydrogeological unit.
idrogeological area, which had to be further investigated in order to subse-
guently build a correct groundwater model (hydrogeological com-
plexes, regional structural lineaments and main springs).

Hydrogeological complexes

The formations of the Umbria-Marches pelagic sequence were
classified into seven hydrogeological complexes, according to their
capability of absorbing and storing meteoric water; this capability
was quantitatively expressed in terms of net recharge (Fig. 2). Given
the particular stratigraphy of the sequence, the complexes with good
infiltration capability are generally bounded by relatively imper-
meable complexes at their bottom and top. The directly assessed net
recharge ranged from 150 to 400 mm/year in the "Scaglia Calcarea"
complex, 350 to 600 mm/year in the "Maiolica" complex and 300 to
800 mm/year in the "Corniola-Calcare Massiccio" one. The calcare-
ous-marly complex, the "Marne a Fucoidi" marlstone complex and
the calcareous-siliceous-marly complex proved to have net recharge
close to zero.

The hydrostructural setting of the Umbria-Marches carbonate
L’alternanza di complessi con caratteristiche idrogeologiche differenti, associata allo stile tectonico regionale, determina l’assetto idrostrutturale del dominio carbonatico umbro-marchigiano dove il nucleo delle anticlinali è sede di potenti acquiferi basali e nei fianchi delle dorsali sono contenuti significativi acquiferi periferici (Figg. 2 e 3).

A scala regionale è possibile individuare due circolazioni idriche sotterranee, generalmente indipendenti. La circolazione idrica più profonda si svolge nell’acquifero regionale basale, contenuto nei complessi della maiolica e della corniola-calcare massiccio. Questa circolazione è fortemente condizionata dalla presenza del complesso calcaro-siliceo-marnoso che, influenzando le dirette di flusso principali, indirizza il drenaggio sotterraneo verso i principali punti di recapito. A scala regionale questo complesso assume il ruolo di aquiclude. Localmente, dove si presenta poco fratturato, con il massimo spessore e con una marcata componente argillosa, costituisce un aquiclude locale che può sostenere falde sospese nel complesso della maiolica.

La circolazione idrica periferica ha sede nell’acquifero della scaglia, contenuto nel complesso della scaglia calcarea. Si tratta di una circolazione estremamente frammentata e sviluppata nei settori periferici delle dorsali anticlinaliche e nei nuclei delle sinclinali. La falda dell’acquifero della scaglia si trova generalmente sospesa sulla falda dell’acquifero basale, sostenuta dall’aquiclude delle marne a fucoidi. Le due falde sovrapposte hanno generalmente circolazioni idriche indipendenti, con quote di saturazione diverse. Dove viene a mancare l’isolamento idraulico dell’aquiclude delle marne a fucoidi i due acquiferi risultano indifferenziati, dando luogo ad imponenti circolazioni idriche senza soluzione di continuità.

Non è ancora sufficientemente noto il ruolo idrogeologico del complesso dolomitico-evaporitico, la cui scarsa estensione in affioramento rende estremamente difficile qualsiasi valutazione quantitativa diretta. Si presuppone che gli orizzonti dolomitici, particolarmente fratturati, siano sede di una circolazione idrica profonda, mentre gli orizzonti evaporitici possano essere considerati aquiclude privi di notevole estensione.

The hydrogeological role of the dolomitic-evaporitic complex is not yet fully known. Its poor exposure makes any direct quantitative assessment extremely difficult. The densely jointed dolomitic horizons are supposed to host a deep groundwater, whereas the evaporitic horizons may be regarded as aquicludes without significant groundwater flow. As a whole, this complex may be interpreted as an aquitard located at the base of the regional basal aquifer.

Fig. 3 - Sezione idrogeologica interpretativa dell’assetto idrostrutturale della dorsale di Monte Maggio (stralcio da BONI et alii, 2005). La traccia della sezione è riportata nella figura 1. Legenda: 1) complessi carbonatici indifferenziati; 2) complessi calcaro-siliceo-marnosi; 3) acquifero della Scaglia calcarea; 4) acquifero basale indifferenziato; 5) livello piezometrico medio dell’acquifero della Scaglia calcarea; 6) livello piezometrico medio dell’acquifero basale.

Hydrogeological section interpreting structural setting of the Monte Maggio ridge (modified from BONI et alii, 2005). Section location is shown in Fig. 1. Legend: 1) carbonate hydrogeological complexes; 2) calcareous-siliceous-marly complexes; 3) “Scaglia Calcarea” aquifer; 4) basal aquifer (“Maiolica” and “Corniola-Calcare Massiccio” complexes); 5) mean watertable of “Scaglia Calcarea” aquifer; 6) mean watertable of basal aquifer.
circolazione idrica significativa. Nel suo insieme il complesso può essere interpretato come un aquifero regionale basale.

Le emergenze di acqua sotterranea alimentate dall'acquifero regionale basale e arricchite nella componente solfatico-magnesica, potrebbero essere interpretate come punti di recapito di una circolazione idrica profonda, diffusa a livello regionale, che coinvolgerebbe il substrato dolomitico-evaporitico e di cui attualmente non sono note le dinamiche principali.

Nello schema di circolazione idrica sotterranea proposto viene attribuito il ruolo idrogeologico di limite di permeabilità ad alcuni lineamenti tattici di importanza regionale. Questi lineamenti, interpretati come limiti a flusso nullo, condizionano le principali direttrici di flusso sotterraneo; in particolare, l'isolamento idraulico lungo i bordi orientali delle idrostrutture è generalmente assicurato dai fronti di sovrascorrimento che determinano l'accavallamento delle dorsali interne su quelle più esterne. La descrizione dello specifico ruolo idrogeologico riconosciuto per i principali elementi strutturali regionali è sintetizzata nella successiva proposta di un modello idrogeologico concettuale di circolazione idrica sotterranea.

SORGENTI

Sono state riconosciute ottantadue sorgenti perenni puntuali e lineari con portata di magra ordinaria uguale o maggiore di 30 L/s; la portata di magra ordinaria di queste sorgenti è stata utilizzata nel calcolo dei valori di infiltrazione efficace e del bilancio idrogeologico delle idrostrutture. Solo nel caso specifico dell'idrostruttura di Monte Cucco sono state considerate alcune sorgenti minori il cui contributo complessivo (circa 100 L/s) non è stato ritenuto trascurabile rispetto alla portata complessiva dell'idrostruttura.

Per ciascuna sorgente è stata considerata la portata di magra ordinaria, che generalmente risulta inferiore alla portata media della sorgente. Per portata di magra ordinaria si intende, infatti, la portata integralmente alimentata dalle acque di falda non influenzata dal contributo di acque di ruscellamento superficiale e/o epidermico. La portata di magra è stata quindi calcolata utilizzando esclusivamente le misure eseguite dopo un periodo di tempo sufficiente all’esaurimento della componente di ruscellamento superficiale legata all’ultimo evento piuoso significativo. Tale periodo è stato stimato non inferiore ai dieci-quindici giorni per le sorgenti lineari e di alcuni giorni per le sorgenti puntuali.

Il valore della portata di magra ordinaria delle sorgenti, riportato nella tabella 1, è stato desunto dal controllo, elaborazione ed omogeneizzazione di dati di portata rilevati negli ultimi ventinque anni dal Dipartimento di Scienze della Terra dell’Università La Sapienza di Roma, integrati con i dati rilevati dal monitoraggio quantitativo eseguito dall’ARPA Umbria e da misure dirette di portata eseguite dai Servizi Tecnici della Regione Umbria (BONI & PETITTA, 2008).

Nel caso delle sorgenti puntuali captate per scopi idropotabili è stato ricostruito il valore delle portate naturali, utilizzando i dati di

Groundwater springs, supplied by the regional basal aquifer and enriched in sulphate-magnesium components, might be interpreted as the points of discharge of a deep groundwater of regional scale; this groundwater, whose dynamics is still poorly known, is likely to flow through the dolomitic-evaporitic bedrock.

In the suggested groundwater flow setting, some main tectonic lines represent no-flow limits, affecting groundwater flowpaths. In detail, hydraulic barriers on the eastern boundaries of hydrogeological units is frequently due to overtrusts of the internal ridges on the external ones. Detailed roles of main tectonic lines is resumed in the following hydrogeological conceptual model.

SPRINGS

Eightytwo localised and linear perennial springs were identified. Their normal minimum-flow values are equal to or greater than 30 L/s. These values were used to calculate the net recharge and the water budget of the investigated hydrogeological units. In the specific case of the Mt. Cucco unit, consideration was given to some minor springs, whose overall (100 L/s) contribution was regarded as significant with respect to the overall discharge from the hydrogeological unit.

For each spring, normal minimum-flow values (generally lower than mean discharge values) were considered. The normal minimum flow expresses the flow that is entirely supplied by groundwater, without the contribution of surface runoff. Therefore, the minimum flow was computed by using the flow data obtained only after allowing sufficient time for exhaustion of runoff from the latest significant rainfall event. This time was estimated to be equal to at least ten-fifteen days for linear springs and to a few days for localised ones.

The normal minimum flow values of the springs (Tab. 1) were obtained after checking, processing and homogenising the discharge data collected in the past twenty-five years by the " Dipartimento di Scienze della Terra" (University of Rome "La Sapienza"). These data were supplemented with the data from a quantitative monitoring survey conducted by ARPA Umbria and with the discharge data directly measured by the Technical Services of the Umbria Region (BONI & PETITTA, 2008).

For localised springs whose water was used for drinking, the natural discharge value was estimated by using water abstraction data coming from different sources and verified at the Regional Technical Office. To avoid gross errors in estimating the discharge from linear
quantitative hydrogeological analysis of the carbonate domain of the umbria region

Sorgenti puntuali e lineari. Legend: Id) idrogeologico; n) sigle riferito a Tabella 1; q) quota in metri s.l.m.; Q) portata di magra ordinaria in L/s

linear and localised springs. Legend: Id) hydrogeological unit; n) sigle referred to Plate 1; q) elevation in m a.s.l.; Q) normal minimum discharge in L/s

Tab. 2 - Perdite di portata in alveo. Legend: Id) idrogeologico unit; n) numero di riferimento nella tavola 1; q) quota in metri s.l.m.; D) decremento medio di portata in litri/secondo

-losses from river to groundwater. Legend: Id) hydrogeological unit; n) sigle referred to Plate 1; q) elevation in m a.s.l.; Q) discharge decrease in L/s

springs, particular care was taken to reconstruct the models of the principal head installations for hydro power generation located on the investigated streams.

Furthermore, data on water chemistry from the literature and from technical reports provided by the Umbria region were checked and reinterpreted. The collected data made it possible to validate the groundwater flow assumptions made in the study and, in particular, to recognise the springs of the basal groundwater. The high magne-
BILANCIO IDROGEOLOGICO INTEGRATO

Il bilancio idrogeologico, riportato nella tabella 3, è stato calcolato utilizzando la procedura spiegata nel capitolo di descrizione dei metodi d'indagine dell'idrogeologia quantitativa. Il bilancio idrogeologico presentato viene denominato “integrato” in quanto tiene in considerazione il risultato del bilancio di ciascuna idrostruttura per giustificare quantitativamente eventuali scambi idrici sotterranei fra idrostrutture adiacenti, secondo la procedura precedentemente illustrata.

L’area di ricarica di ciascuna idrostruttura (colonna A della tabella 3) corrisponde all’estensione dell’idrostruttura stessa. L’area di alimentazione effettiva corrisponderebbe all’estensione degli affioramenti dei complessi idrogeologici che svolgono un ruolo attivo nell’alimentazione delle falde, grazie alla loro marcata capacità di infiltrazione. Lo stile tettonico plicativo caratteristico della regione determina l’affioramento, lungo i versanti delle dorsali, di un’alternanza di complessi relativamente permeabili, con elevata attitudine all’infiltrazione, e di quelli considerati impermeabili, in cui prevale il ruscello superficialmente, che comunque localmente contribuisce ad alimentare l’infiltrazione efficace dei complessi permeabili toponomasticamente sottostanti. In questa analisi idrogeologica a scala regionale gli affioramenti dei complessi idrogeologici prevalentemente marnosi sono, quindi, da considerarsi a tutti gli effetti parte integrante dell’area di ricarica.

INTEGRATED HYDROLOGICAL BUDGET

The proposed hydrogeological model was validated by an integrated computation of the water budget, evaluated following the above explained methodology. The result of the water budget has been named “integrated”, taking into account water budget of each hydrogeological unit, with the aim of justify possible groundwater exchanges between adjacent units.

The actual recharge area of each hydrogeological unit (column A in table 3) is supposed to correspond to the outcropping area of the hydrogeological complexes playing an active role in groundwater recharge, thanks to their high capability of infiltration. The folding tectonic style which is typical of the region favours the outcropping of an alternation of complexes along the ridge slopes: i) permeable complexes with a high infiltration capability; and ii) impermeable complexes where surface runoff is dominant but contributes to the net recharge of the underlying permeable complexes. Thus, in regional-scale hydrogeological analyses, the exposures of dominantly marly hydrogeological complexes are to be considered as an integral part of the recharge area. Therefore, the extent of the hydrogeological unit matches the extent of the area recharging the groundwater which flows in the same unit.

The adopted “direct” method for water budget calculation considers as outflows the spring discharges and groundwater losses.
rea di ricarica stessa. L'estensione dell'area di ricarica corrisponde quindi all'estensione dell'intera idrostruttura.

Il metodo "diretto" utilizzato per il calcolo considera come "uscite" del bilancio le portate erogate dalle sorgenti e gli scambi idrici sotterranei verso l'esterno; costituiscono le "uscite" l'infiltrazione efficace e gli eventuali apporti sotterranei provenienti dall'esterno. I valori complessivi di portata in uscita (colonna \(Q_{UTOT}\) in tabella 3) si ottengono, quindi, dalla somma della portata delle sorgenti (\(Q_s\)) e delle perdite sotterranei verso l'esterno (\(Q_{ex}\)) mentre i valori complessivi di portata in entrata (\(Q_{ETOT}\)) sono desunti dalla somma delle perdite sotterranei dall'intera idrostruttura costituita da sorgenti (\(Q_{s}\)) e dalle perdite sotterranei verso l'esterno (\(Q_{ex}\)) mentre i valori complessivi di portata in entrata (\(Q_{ETOT}\)) sono desunti dalla somma della portata delle sorgenti (\(Q_{s}\)) e dell'estensione della loro area di ricarica. L'estensione dell'intera idrostruttura è da attribuire all'estensione dell'intera idrostruttura. E' opportuno ribadire che il metodo utilizzato non prevede l'analisi dei dati pluviometrici; infatti il valore dell'infiltrazione efficace non è stato calcolato come aliquota delle precipitazioni, ma dal rapporto fra la portata erogata dalle sorgenti e l'estensione della loro area di ricarica.

La trascurabile differenza rilevabile, talvolta, fra il valore complessivo delle entrate e delle uscite del bilancio è da attribuire all'approssimazione dei calcoli, in quanto i valori di portata misurati sono stati originariamente approssimati, e ovvie ripercussioni nel calcolo degli altri termini del bilancio espressi in L/s e mm/anno.

Il calcolo del bilancio mette in evidenza che le 21 idrostrutture individuate hanno una potenzialità complessiva di circa 50,000 L/s e costituiscono, nel loro insieme, un sistema idrogeologico aperto in corrispondenza della Piana di Colfiorito, da cui riceverebbe un apporto sotterraneo di circa 860 L/s, e in corrispondenza del limite con la Valle Umbra, dove sono state valutate perdite sotterranee di almeno 2510 L/s, di cui 1780 L/s dalle idrostrutture di Monte Aguzzo e di Monte Carpegna e circa 730 L/s da Monte Subasio; l'intero sistema, inoltre, cederebbe dall'idrostruttura dei Massici Perugini circa 770 L/s e dal'idrostruttura dei Monti di Gubbio circa 50 L/s, che contribuirebbero all'alimentazione degli acquiferi alluvionali della piana del Tevere.

MODELLO IDROGEOLOGICO CONCETTUALE DI CIRCOLAZIONE IDRICA SOTTERRANEA

Il modello idrogeologico, presentato nella Tavola 1, costituisce il prodotto finale di una ripetuta e reciproca verifica fra i risultati del calcolo del bilancio idrogeologico integrato e l'analisi dell'assetto geologico-strutturale del territorio investigato.

Il modello idrogeologico proposto evidenzia a scala regionale una circolazione idrica sotterranea estremamente articolata, frammentata in ventuno idrostrutture che presentano generalmente diretttrici preferenziali di flusso orientate NS, la cui geometria ricalca la morfologia delle dorsali carbonatiche.

I risultati proposti devono considerarsi come ipotesi interpretative, in parte verificate e in parte ancora da sottoporre a valutazioni successive, anche attraverso studi e indagini integrative. Il dettaglio del modello di circolazione non è uniforme per tutte le strutture investigate; in alcuni casi, infatti, è necessario un maggiore approfondimento toward external units; inflows are represented by net recharge and possible groundwater exchanges coming from adjacent hydrogeological units. Total discharge of outflows (column \(Q_{UTOT}\) in Table 3) has been calculated adding spring discharge (\(Q_s\)) with groundwater losses (\(Q_{ex}\)), while total inflows (\(Q_{ETOT}\)) are inferred adding net recharge (\(I_e\)), groundwater exchanges entering in the unit (\(Q_{in}\)) and losses from streams where discharge decrease has been measured (\(Q_f\)).

It is worth reiterating that the method does not involve the analysis of precipitation data. In effect, net recharge is computed as a percentage of precipitation, but on the basis of a comparison between the discharge from springs and the respective recharge area.

Negligible differences between inflow and outflow of the water budget is due to uncertainty of calculation, because discharge values have been rounded, affecting subsequent evaluation of water budget terms.

The identified 21 hydrogeological units have an overall water potential of roughly 50,000 L/s. As a whole, they constitute an open hydrogeological unit which includes the Colfiorito Plain, which is recharged with about 860 L/s of groundwater. Near the boundary with the Valle Umbra valley, groundwater leakage from the hydrogeological units of Mt. Aguzzo-Mt. Carpegna (1780 L/s) and of Mt. Subasio (730 L/s) was calculated to be equal to at least 2,510 L/s. Additionally, groundwater leakage from the Perugia reliefs (about 770 L/s) and from Gubbio Ms. unit (50 L/s) is supposed to supply the alluvial aquifers of the Tiber river.

CONCEPTUAL MODEL OF GROUNDWATER FLOW

A conceptual groundwater flow model (Plate 1) is the final result of the iterative verify between integrated water budget values and geological-structural setting analysis of the studied area.

The proposed model shows that, at regional scale, groundwater flow is extremely diversified and fragmented among twenty-one hydrogeological units with preferential N-S flowpaths. The geometry of these units is reflective of the morphology of the local carbonate ridges.

These results should be regarded as interpretative assumptions, in part tested and in part to be refined, also through additional studies and investigations. The detailed groundwater flow model is not uniform for all the investigated structures. In some cases, the need arises for conducting more thorough hydrogeological studies, especially where the geological-structural setting is particularly complex and where available quantitative hydrogeological data are insufficient.
dello studio idrogeologico, soprattutto dove l’assetto geologico-strutturale si presenta particolarmente complesso e dove i dati idrogeologici quantitativi disponibili risultano carenti. La completezza del quadro conoscitivo ha consentito l’accurata ricostruzione della circolazione idrica sotterranea il cui dettaglio arriva alla distinzione delle direttrici di flusso dell’acquifero basale da quelle dell’acquifero della scaglia.

La ricostruzione dell’assetto idrogeologico delle strutture carbonatiche minori (Monti di Gubbio, Massicci Perugini e Monte Subasio), ubicate ad ovest della dorsale carbonatica umbro-marchigiana, ripropone semplicemente le interpretazioni proposte da altri Autori (Boila et alii, 1999; Chiodini et alii, 1991; Ficiara et alii, 1998).

L’isolamento idraulico lungo i fianchi orientali delle idrostrutture è assicurato generalmente da elementi tettonici compressivi e lungo il fianco occidentale dal tamponamento dei complessi marnosi e argillosi. In corrispondenza dei limiti meridionali e settentrionali non sempre è stato accertato e verificato l’isolamento idraulico e, in alcuni casi, sono state individuate alcune situazioni di scambi idrici sotterranei fra idrostrutture confinanti.

Il limite di permeabilità lungo il bordo orientale delle idrostrutture più interne (Monte Cucco, Monte Maggio, Monte Faeto e Monte Santo Stefano) è stato riconosciuto in corrispondenza del sovrascorrimento regionale Monte Nerone-Monte Santo Stefano (Calamita & Deiana, 1995); il fronte di sovrascorrimento di Monte Cavallo (Calamita & Pierantoni, 1992) separa le circolazioni idriche sotterranee delle idrostrutture di Monte Cavallo e di Monte Tolentino-Monte Cavogna; la linea della Valnerina (Decandia et alii, 1980; Decandia, 1982; Consento et alii, 1991; Calamita & Pierantoni, 1992) e il fronte di sovrascorrimento di Tancia-Contigliano (Manganelli & Faramondi, 1990) dividono il sistema di alimentazione delle grandi sorgenti di Montero-Stifone da quello che alimenta il flusso di base del fiume Nera (idrostrutture di Monte Coscerno e Monte Tolentino-Monte Cavogna).

Sono stati riconosciuti locali scambi idrici sotterranei attraverso i limiti di alcune idrostrutture dove l’assenza di idonei elementi strutturali o litologici non garantisce la separazione idraulica completa.

In particolare, sono stati individuati possibili scambi idrici e sotterranei fra la Piana di Colfiorito e le idrostrutture di Monte Maggio, di Monte Santo Stefano e di Monte S.Salvatore, che riceverebbero un’aumentazione sotterranea di entità tutt’altro che trascurabile. I piani carsici di Colfiorito possono essere considerati un’area ad elevata infiltrazione, in quanto la pioggia caduta viene raccolta dalla piana, trattenuta in superficie dal complesso fluvio-lacustre, a bassa permeabilità, e indirizzata dal ruscellamento superficiale verso gli inghiotti.

Completeness of the collected data made it possible to carefully reconstruct groundwater flow in most of the investigated hydrogeological units. The level of detail of the reconstruction was such as to discriminate the flowpaths of the basal groundwater from those of the "Scaglia" groundwater.

The hydrogeological model of the minor carbonate structures, located W of the Umbria-Marches carbonate ridge, re-proposes the interpretations given by other authors (Boila et alii, 1999; Chiodini et alii, 1991; Ficiara et alii, 1998).

In general, hydraulic separation between adjacent hydrogeological units is provided by compressional tectonic features along the eastern slopes and by the sealing marly and clayey complexes along the western ones. Hydraulic separation between neighbouring hydrogeological units at the southern and northern boundaries was not always detected or verified. Indeed, some hydraulically open hydrogeological units were observed.

The eastern permeability limit of internal hydrogeological units (Monte Cucco, Monte Maggio, Monte Faeto and Monte Santo Stefano) has been identified along the regional overthrust Monte Nerone-Monte Santo Stefano (Calamita & Deiana, 1995); thrust of Monte Cavallo (Calamita & Pierantoni, 1992) acts as a divide between groundwater flows of Monte Cavallo unit and Monte Tolentino-Monte Cavogna unit; Valnerina tectonic line (Decandia et alii, 1980; Decandia, 1982; Consento et alii, 1991; Calamita & Pierantoni, 1992) and Tancia-Contigliano thrust (Manganelli & Faramondi, 1990) are groundwater divides between Montero-Stifone spring recharge area and baseflow of Nera Valley (hydrogeological units of Monte Coscerno and Monte Tolentino-Monte Cavogna). Thrust of Monti Sibillini (Castellarin et alii, 1978; Coli, 1981; Salvini & Vittori, 1982; Boccaletti et alii, 1983; Lavecchia, 1985, Cooper & Burhi, 1986) and Olevano-ANTrodoco line (Cipollari & Consento, 1992) represent a no-flow eastern limit of external hydrogeological units. Locally, minor thrusts correspond to no-flow limits between hydrogeological units.

Groundwater exchanges have been recognized through boundaries of some hydrogeological units, where absence of real lithological or structural limits does not ensure hydraulic separation between units. In particular, groundwater cross-flows between the Colfiorito Plain and the hydrogeological units of Mt. Maggio, Mt. Santo Stefano and Mt. S.Salvatore are likely to be supplied by groundwater flows of a non-negligible extent.

The karst planes of Colfiorito may be considered as a high infiltration area, since rainwater is collected by the plain, retained at the surface by the low-permeability fluvio-lacustrine complex and channelled by surface runoff towards karst swallow-holes. From these swallow-holes, the water directly supplies the carbonate aquifers underlying the fluvio-lacustrine cover. Part of this runoff water represents the minimum flow of the Fiume Chienti river, which is equal to about 115 L/s at the outlet of the plain. For the Colfiorito plain, Mastrorillo (1994) determined a yearly mean value of net precipi-
to convert, at the only alimentation directly to the aquifers carbonate rocks sotting. At the coltura fluvio-lacustrine. A parte di queste acque di ruscellemento costituisce integralmente la portata del Fiume Chienti, che all'uscita dalla piana è di circa 115 L/s. Mastorillo (1994) valuta per la piana un valore medio annuo di precipitazione efficace di circa 600 mm. Considerate le locali caratteristiche geomorfologiche descritte, è ragionevole attribuire all'infiltrazione efficace un valore prossimo a quello della precipitazione efficace; per la Piana di Colfiorito si stima quindi una potenzialità idrica pari a circa 1000 L/s. Il deficit di bilancio calcolato per le adiacenti idrostrutture consente di ipotizzare un'alimentazione sotterranea verso l'idrostruttura di Monte Maggio di almeno 185 L/s; verso l'idrostruttura di Monte S.Salvatore drrenerebbero circa 120 L/s. La potenzialità idrica residua (circa 140 L/s) contribuirebbe all'alimentazione delle adiacenti dorsali marchigiane.

Scambi idrici consistenti avvengono anche lungo il fronte di contatto fra le dorsali carbonatiche e la Valle Umbra fra Foligno e Spoleto, favoriti dalla presenza di spesse coltri detritiche al piede dei versanti. Il deficit ottenuto dal bilancio conferma, infatti, l'ipotesi di collegamento dei versanti. Il settore meridionale dell'idrostruttura di Monte Siliolo-Monte Carpegna alimenterebbe l'acquifero della Valle Umbra con almeno 1140 L/s a sud delle Fonti del Clitunno, mentre nel tratto a nord del Clitunno è stata ipotizzata un'alimentazione dell'acquifero alluvionale di circa 640 L/s da parte dell'idrostruttura di Monte Aguzzo.

E' stato, inoltre, individuato un probabile flusso idrico sotterraneo di circa 80 L/s dall'idrostruttura di Monte Faeto verso quella di Monte Maggio.

La maggiore incertezza del modello di circolazione proposto riguarda il settore sudoccidentale, dove la posizione decentrata della più grande sorgente delle regione (Stifone-Montoro, 13,420 L/s) troverebbe una continuità idraulica con le idrostrutture prive di emergenze significative che la circondano (Monti Martani, Monti di Narni-Amelia, Monti di Spoleto, Monti Sabini). Attribuendo a queste idrostrutture valori di infiltrazione efficace compatibili con l'estensione degli affioramenti dei composti idrogeologici che le caratterizzano, è stata calcolata per l'intero sistema una potenzialità idrica complessiva di 14,400 L/s (Tab. 4), valore confrontabile con quello della portata misurata della sorgente di Stifone-Montoro. Secondo i criteri adottati, questo risultato avvalora l'ipotesi di una comunicazione sotterranea diretta fra le idrostrutture, ma non ne costituisce la verifica, per l'impossibilità di un controllo diretto delle portate travasate dalle idrostrutture.

Tab. 4 - Potenzialità idrica delle idrostrutture del sistema di alimentazione di Stifone-Montoro calcolata sulla base dell'attribuzione di valori di infiltrazione efficace ipotizzati. LEGENDA: Id) numero identificativo dell'idrostruttura; Ie) infiltrazione efficace in millimetri/anno; Q) potenzialità media dell'idrostruttura in litri/secondo. Discharge potential of Stifone-Montoro recharge units, based on assumed net recharge evaluation. LEGEND: Id) id of each hydrogeological unit; Ie) net recharge in mm/year; Q) mean discharge potential in L/s.

<table>
<thead>
<tr>
<th>Id</th>
<th>Hydrogeological unit</th>
<th>Ie (mmyr)</th>
<th>Q (L/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15a</td>
<td>Monti Martani</td>
<td>500</td>
<td>2060</td>
</tr>
<tr>
<td>15b</td>
<td>Monti di Narni-Amelia</td>
<td>600</td>
<td>5099</td>
</tr>
<tr>
<td>15c</td>
<td>Monti di Spoleto</td>
<td>550</td>
<td>2860</td>
</tr>
<tr>
<td>15d</td>
<td>Monti Sabini</td>
<td>650</td>
<td>4370</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14389</td>
<td></td>
</tr>
</tbody>
</table>
strutture adiacenti verso l'emergenza di Stifone-Montoro.

Altri Autori (CHIOCCHINI et alii, 1987; DI MATTEO et alii, stesso volume), sulla base del risultato di bilanci idrogeologici che prendendo in considerazione l'analisi dei dati pluviometrici e termometrici, attribuiscono alle sorgenti di Stifone-Montoro un'area di alimentazione più ampia, comprendente una parte delle dorsali della Valnerina e dei Monti Reatini.

La verifica di una probabile alimentazione della sorgente da parte delle idrostrutture considerate richiede un necessario approfondimento delle ricerche, mirato alla corretta interpretazione dell'assetto geologico-strutturale profondo, per chiarire le modalità di un'eventuale comunicazione idraulica profonda fra le singole idrostrutture. Inoltre, per una corretta definizione dell'area di ricarica delle sorgenti di Stifone Montoro è necessario approfondire gli studi sul ruolo del substrato evaporitico-dolomitico triassico, che influenza in modo determinante la qualità delle acque di questa sorgente, caratterizzata da un'elevata mineralizzazione.

VALUTAZIONE DEL PARAMETRO INFILTRAZIONE EFFICACE

Nel calcolo del bilancio è stato attribuito a ciascuna idrostruttura un valore di infiltrazione efficace medio, indicativo dell'ordine di grandezza del fenomeno valutato.

Una maggiore rappresentatività è espresa dai valori di infiltrazione efficace direttamente valutati dividendo la portata erogata da alcune singole emergenze per le rispettive aree di ricarica, individuate dall'analisi geologico-strutturale. I dati ottenuti hanno consentito di attribuire un valore medio di infiltrazione efficace ai singoli complessi idrogeologici affioranti in alcune idrostrutture. Questa valutazione è riportata nella tabella 5.

I risultati ottenuti confermano la maggiore capacità di infiltrazione efficace dei complessi della maiolica e della corniola-calcare massiccio, rispetto a quella del complesso della scaglia calcarea, già rilevata da Boni et alii (2005); evidenziano inoltre una variabilità spaziale dell'infiltrazione efficace all'interno dei singoli complessi idrogeologici, attribuibile alla distribuzione territoriale delle precipitazioni, ma soprattutto alle caratteristiche litologiche e strutturali degli affioramenti dei singoli complessi idrogeologici (MASTRORILLO, 2001).

I complessi della maiolica e della corniola-calcare massiccio contribuiscono entrambi all'alimentazione dell'acquifero regionale basale; l'affioramento del complesso corniola-calcare massiccio costituisce una porzione generalmente troppo limitata dell'area di alimentazione complessiva per consentire una valutazione differenziata dei valori di infiltrazione efficace tra i due complessi.

ASSESSMENT OF NET RECHARGE

To compute the water budget, a mean net recharge value was assigned to each hydrogeological unit. Therefore, the resulting values are merely indicative of the order of magnitude of the investigated phenomenon.

Net recharge values have been evaluated comparing discharge of some single springs to their recharge area, individuated on the basis of geological-structural setting. Obtained results allowed to assign a mean value of net recharge for each single hydrogeological complex outcropping in some hydrogeological unit. This evaluation is shown in Table 5.

The results confirm that the capability of infiltration of the "Maiolica" and "Corniola-Calcare Massiccio" complexes is higher than the one of the "Scaglia Calcarer" complex, as reported in previous studies (Boni et alii, 2005). The same results suggest that the net recharge of the individual hydrogeological complexes is spatially variable and that this variability may be due to: i) the spatial distribution of precipitation (depending on morpho-climatic parameters); and ii) the lithological and structural characteristics of the outcrops of the individual hydrogeological complexes (MASTRORILLO, 2001).

Both the "Maiolica" and "Corniola-Calcare Massiccio" complexes contribute to supplying the regional basal groundwater. However, the outcrop area of the "Corniola-Calcare Massiccio" was too small (with respect to the overall recharge area) to permit separate calculation of its net recharge values. For the two complexes as a whole, the net recharge was calculated to lie in the 435-680

<table>
<thead>
<tr>
<th>Id</th>
<th>Idrostruttura / Hydrogeological unit</th>
<th>le sc</th>
<th>1e ma, co-cm</th>
<th>1e ma, co-cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Monte Cucco</td>
<td>170</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Monte Maggio</td>
<td>345</td>
<td>470</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Monte Pennino</td>
<td>380</td>
<td>- - -</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Monte Facto</td>
<td>410</td>
<td>- - -</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Monte S. Stefano</td>
<td>400</td>
<td>490</td>
<td></td>
</tr>
</tbody>
</table>

Il calcolo dell'infiltrazione efficace nel complesso della scaglia calcaria ha fornito valori compresi fra 170 e 425 mm/anno.

Le idrostrutture più settentrionali (Monte Cucco e Monte Maggio) presentano valori di infiltrazione efficace notevolmente inferiori a quelli noti in letteratura per i complessi carbonatici della successione umbro-marchigiana. Queste differenze possono essere attribuite all'incidenza maggiore in queste idrostrutture delle intercalazioni marne e calcare della scaglia, che influenzano sia la litologia degli affioramenti, sia la tipologia delle deformazioni subite dalla formazione durante l'orogenesi. Anche Mastrorillo (2001) ha rilevato una notevole differenza nei valori di infiltrazione efficace della scaglia tra la porzione della dorsale umbro-marchigiana settentrionale (120 mm/anno) e la porzione meridionale (365 mm/anno), sottolineando che i valori di infiltrazione efficace sembrerebbero aumentare progressivamente da nord verso sud.

CONCLUSIONI

In questa nota viene proposta un'ipotesi di modello concettuale di circolazione idrica sottoportante del dominio carbonatico umbro, formulata sulla base della revisione critica ed omogeneizzazione delle conoscenze acquisite di circa 25 anni di studi e ricerche idrogeologiche che il Laboratorio di Idrogeologia Quantitativa ha svolto sotto la guida del Professor Carlo Boni nel territorio umbro-marchigiano.

I principali risultati ottenuti con l'applicazione del metodo dell'analisi idrogeologica quantitativa costituiscono un contributo innovativo all'attuale quadro conoscitivo dell'idrogeologia del dominio carbonatico umbro e sono sintetizzati nella Carta delle Idrostrutture Carbonatiche Umbre, realizzata alla scala 1:250.000 come prodotto di una convenzione di ricerca fra il Dipartimento di Scienze della Terra dell'Università "La Sapienza" di Roma e la Regione Umbria e presentata in questa nota a scala ridotta nella tavola 1.

L'approccio metodologico, basato sul metodo di calcolo del bilancio integrato, ha portato all'allestimento di un modello concettuale di circolazione idrica sottoportante suddiviso non solo per idrostrutture ma anche in funzione dei diversi acquiferi; nella maggior parte delle idrostrutture, infatti, sono state differenziate e ricostruite mm/year range. The highest values correspond to recharge areas where the outcrops of the "Corniola-Calcare Massiccio" complex have considerable extent with respect to the one of the "Maiolicà" complex (Mt. Coscerno and northern sector of the Mt. Bove hydrogeological unit). Hence, it is fair to suppose that the net recharge which may attributed to the "Corniola-Calcare Massiccio" complex alone exceeds the one computed for the two complexes as a whole. The 295 mm/year value attributed to the "Maiolicà" and "Corniola-Calcare Massiccio" complexes, in the southern sector of the Mt. Bove hydrogeological unit, represents an anomaly in the regional distribution of net recharge; this anomaly is related to the poor precipitation recorded in the Castelluccio-Mt. Vettore area (Boni & Petitta, 2007).

The net recharge of the "Scaglia Calcarea" complex proved to be 170-425 mm/year.

The more northerly hydrogeological units (Mt. Cucco and Mt. Maggio) have a net recharge of the "Scaglia complex" which is significantly lower than the values reported in the literature for the carbonate complexes of the Umbria-Marches sequence. These differences may be ascribed to the fact that the "Scaglia" formation in these hydrogeological units has a greater number of marly intercalations, which affected both the lithology of outcrops and the types of deformations that the formation underwent during orogeny. Mastrorillo (2001), too, noted significantly different net recharge values between the northern portion (120 mm/year) and the southern portion (365 mm/year) of the Umbria-Marches ridge, emphasizing that net recharge appears to progressively increase from N to S.

CONCLUDING REMARKS

This paper proposes a conceptual model of groundwater flow in the Umbria carbonate domain. The model was built after critically reviewing and homogenising the data collected in about 25 years of hydrogeological studies in the Umbria-Marches regions. The studies were conducted by the Hydrogeological Laboratory under the supervision of Professor Carlo Boni.

The main results achieved through the application of the quantitative hydrogeology method provide an innovative contribution to understanding the basic hydrogeological features of the Umbrian carbonate domain. These results are summarised in the Map of the carbonate hydrogeological units of the Umbria region. The map (scale 1:250,000) is the result of a research contract which was signed between the "Dipartimento di Scienze della Terra" (University of Rome "La Sapienza") and the Umbria Region. This paper encloses a simplified small-scale version of the map (Plate 1).

Thanks to the methodological approach extensively covered in this paper, a conceptual groundwater model was built. The model considered not only the hydrogeological units, but also the related aquifers. Indeed, in most of the investigated hydrogeological units,
le principali direzioni di flusso sotterraneo distinte per i due acquiferi regionali riconosciuti (acquifero della scaglia calcarea e acquifero regionale basale).

Per ciascuna idrostruttura è stato, inoltre, calcolato un bilancio idrogeologico che tiene in considerazione il risultato del bilancio delle strutture adiacenti. Il bilancio della singola struttura risulta, quindi, integrato in uno schema globale a scala regionale, dove gli eventuali apporti sotterranei provenienti dall’esterno di ciascuna struttura sono quantitativamente giustificati da altrettante perdite sotterraneo verso strutture limitrofe.

La valutazione dell’infiltrazione efficace media ha messo in evidenza l’estrema variabilità spaziale di questo parametro all’interno dei singoli complessi idrogeologici permeabili affioranti, manifestando, quindi, la necessità di definirla per ciascuna idrostruttura; i valori di infiltrazione efficace media valutati per il complesso della scaglia calcarea sono compresi, infatti, fra 170 mm/anno e 425 mm/anno e quelli relativi ai complessi della maiolicia e della corniola-calcare massiccio indifferenziati variano da 295 mm/anno a 680 mm/anno.

I risultati presentati in questo lavoro forniscono un’ulteriore conferma della validità dei metodi di analisi dell’idrogeologia quantitativa nelle indagini idrogeologiche a scala regionale e costituiscono una verifica positiva della loro applicazione anche ad una scala di maggior dettaglio. Il modello idrogeologico concettuale proposto, infatti, coniuga l’analisi a scala regionale dell’intero dominio carbonatico umbro con l’analisi alla scala delle singole idrostrutture, raggiungendo l’obiettivo di superare un approccio dedicato alla singola porzione di territorio, senza rinunciare al grado di dettaglio minimo necessario per fornire un adeguato supporto al governo della risorsa idrica sotterranea alla scala regionale.

Net recharge, calculated with the direct quantitative hydrogeology method, proved to have a high spatial variability inside the investigated hydrogeological complexes. The need thus arose for defining net recharge for each hydrogeological unit. Indeed, the mean net recharge values for the "Scaglia Calcarea" complex were calculated to be 170-425 mm/year; those for both the "Maiolica" and "Corniola-Calcare Massiccio" complexes ranged between 295 mm/year and 680 mm/year.

The findings from the study confirm, once again: i) the value of quantitative hydrogeology methods in regional-scale hydrogeological investigations; and ii) their applicability to a more detailed scale. Indeed, the proposed hydrogeological model combines regional-scale analysis of the entire Umbrian carbonate domain with local-scale analysis of its individual hydrogeological units. This choice achieved a two-fold goal: i) overcoming the limits of an approach focused on a single area; and ii) ensuring the minimum level of detail which is required to support regional groundwater resource management policies.

OPERERICE/REFERENCES

QUANTITATIVE HYDROGEOLOGICAL ANALYSIS OF THE CARBONATE DOMAIN OF THE UMBRIA REGION

Received October 2008 - Accepted February 2009
Tav. 1 - Carta delle idrostrutture carbonatiche umbre. LEGENDA: 1) reticolo idrografico perenne; 2) sorgente puntuale perenne con numero di riferimento; 3) sorgente lineare perenne con numero di riferimento; 4) perdita di portata in alveo con numero di riferimento; 5) principale direzione di deflusso della circolazione idrica sotterranea nell’acquifero della scaglia calcarea; 6) principale direzione di deflusso della circolazione idrica sotterranea nell’acquifero basale; 7) principali scambi idrici sotterranei fra idrostrutture; 8) affioramento del complesso della scaglia calcarea; 9) arco di ricarica preferenziale di Colfurano; 10) limite delle idrostrutture; 11) fronti di sovrassottosuolo regionale; 12) classi di portata delle sorgenti puntuali; 13) classi di portata delle sorgenti lineari.

Map of the hydrogeological units of the Umbria Region. LEGEND: 1) Hydrographic network; 2) Perennial spring with reference number; 3) Perennial linear spring with reference number; 4) Groundwater losses with reference number; 5) Main groundwater flowpath in the "Scaglia" aquifer; 6) Main groundwater flowpath in the "Basal" aquifer; 7) Main aquifers between hydrogeological units; 8) Scaglia complex outcropping; 9) Preferential recharge area of Colfurano Plain; 10) Boundary of hydrogeological units; 11) Regional overthrust; 12) Discharge range for localized springs; 13) Discharge range for linear springs.